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Analysis of an Experimental Technique for
Determining Van der Pol Parameters

of a Transistor Oscillator
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Abstract—The Van der Pol (VDP) model of a transistor oscilla-
tor describes the behavior of the oscillator with three parameters.
When operating in steady state, only two parameters can be
determined by spectrum analysis, these being the oscillation
frequency and amplitude of oscillation. In this paper, a technique
for measuring the other VDP parameter is examined. In this
approach, a periodically modulated voltage is added to the bias
of the oscillator to perturb the operational state. A theoretical
derivation shows that the power spectrum of the perturbed
oscillator contains additional information for determination of
the other VDP parameter. A simple analytical perturbation
formula predicts the oscillator’s response to the ramped bias.
Our experimental results agree with the analytical perturbation
solution and, therefore, this allows one to read off the other
VDP parameter from the experimental data. The VDP model
allows one to predict the behavior of coupled transistor oscillators
more accurately and simply than does the traditional large-signal
model of the transistor. This VDP model will simplify oscillator
array design since the number of parameters needed to describe
each oscillator is reduced from that which would be required
using a large-signal circuit model.

I. INTRODUCTION

COUPLED transistor oscillators are one implementation
for active phased arrays. The design of such active

arrays requires one to analyze and predict the performance
of coupled oscillators. In a conventional approach, transistor
oscillators are investigated by using large-signal models of
MESFET’s or high electron-mobility transistors (HEMT’s)
[1]–[8]. The harmonic-balance technique [9] is often used in
these large-signal transistor models for nonlinear microwave
circuit designs. These models can predict performance of
power monolithic microwave integrated circuit (MMIC) am-
plifiers and oscillators [10]. However, using computer-aided
design (CAD) tool packages to analyze a coupled oscillator
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array, we are faced with a problem that is not easily solved
with current software. That is, the large-signal models of the
transistor have many variables. Additionally, since almost all
of the variables have nonlinear saturation characteristics and
are bias dependent, there is generally no easy way to predict
how oscillators will perform if parasitics are introduced or
if bias conditions drift. As the number of oscillators in the
array increases, the array performance becomes more difficult
to analyze, as both the computer time and computational
errors increase. Since Van der Pol (VDP) coupled oscillator
theory has been recognized as an effective way to describe the
performance of a coupled oscillator array, a VDP equation
for a single transistor oscillator is used in our modeling.
The purpose of this paper is to develop simple experimental
techniques to determine the VDP parameters for transistor
oscillators. It is the importance of understanding the time-
dependent dynamics of oscillator design that motivates use
of a VDP model. The VDP model allows the dynamics of an
oscillator to be reduced to only three parameters: the resonance
frequency, the oscillator factor, and the nonlinear saturation
coefficient. If, for example, active antenna grid arrays [11]
are to be used for beam steering and other radar applications,
knowledge of the dynamics enables predictions of how fast
an antenna can be steered by an external signal and what
bandwidth can be expected using specific transistor elements.

In 1927, Van der Pol investigated the self-sustained triode
oscillator. He observed that the saturating characteristic of
a triode is the one that is proportional to the cube of the
oscillation intensity [12]. Later, the formula

to describe this type of self-sustained nonlinear
oscillation was named the VDP oscillator equation. Since
1927, extensive work in the field of self-sustained oscillators
has been carried out by many researchers [13]–[16]. Examples
include laser, mechanical, and electrical oscillators. Previous
studies have shown that even though different mechanisms
govern the self-sustained oscillators, they can be described by
the VDP equation, as was deduced by fundamental physical
arguments in [17]. In Van der Pol’s equation, the parameters
are related to the physics of individual oscillators. A quasi-
optical oscillator array using the VDP coupled oscillator
theory has been analyzed by York [18]. In general, there
are two approaches to obtain VDP parameters: numerical
or experimental. The numerical approach yields low overall
accuracy because it is based on imprecise circuit parameters
of the oscillator, which are uncertain in the large-signal limit.
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Fig. 1. Three ways of denoting the equivalent circuit model of a common source transistor oscillator. (a) With circuit parameters. (b) As a two-port.
(c) As a one-port.

Therefore, in this paper, the experimental approach is used
to yield the more accurate parameters to be used in the VDP
model. The steady-state solution of the VDP equation contains
sufficient information to determine two of the parameters.
This paper provides another method to determine the sat-
uration parameter of the transistor oscillator by applying a
time-periodic perturbation to the bias voltage of a transistor
oscillator. The analysis of the slightly perturbed oscillator
is carried out by using a multiple-scale expansion. When a
transistor is externally modulated, the sidebands generated in
the power spectrum contain the necessary information. Our
approach for obtaining the VDP parameters is experimentally
verified, and the results agree with the theoretical prediction.

The remainder of this paper is organized as follows. In
Section II, we will give an example of how the behavior
of the transistor oscillator can be described by the VDP
equation. In this example, we will demonstrate that the VDP
parameters are directly related to the circuit parameters of the
oscillator in a large-signal limit. In Section III, a method for
experimentally determining the VDP parameters is derived.
From the theoretical derivation and numerical calculations,
we show that the VDP parameters which cannot be measured
from a steady-state oscillator can be evaluated by the proposed
technique. In Section IV, the experimental implementation and
results for verifying the theory are discussed. Conclusions are
discussed in Section V.

II. VDP EQUATION FOR A SELF-SUSTAINED

TRANSISTOR OSCILLATOR

A. Linear-Circuit Model

The feedback mechanism for transistor oscillation can be
provided in many different ways. Oscillators can have a com-
mon source, common gate, or common drain configurations,
and they can have additional capacitance, inductance, or resis-
tance as feedback elements. Even though the physical feedback
mechanisms are different, a self-sustained oscillation can be

represented by the VDP equation, as Adler so eloquently
described in [17]. To demonstrate that the VDP parameters
are a function of the circuit parameters of an oscillator and to
show how the oscillator circuit can be cast as a VDP oscillator,
a radiating oscillator built with a Fujitsu HEMT (fh35 ) is
used as a specific example. An equivalent circuit model of an
intrinsic MESFET or HEMT [19] is adopted in our modeling.
The circuit parameters of the transistor are extracted from
the data sheet [20]. The impedance of the source–drain load
is represented by the symbol , and the impedance of the
gate–source terminal load is represented by the symbol.
Both impedances can be calculated from the passive circuit
geometry once the main operation mode in the structure is
defined. Starting with the small-signal equivalent circuit of
Fig. 1 and letting be the ratio of the alternating voltage
drop in the gate–source capacitor to the gate–source
voltage , one can write

(1)

where . Typically, the value of is on the
order of 10 . Since the frequency of our oscillator is in the
gigahertz range, can be approximated to be . This
then shows, to this order of approximation, thatand are
identical. Referring to Fig. 1(a), one sees that this is equivalent
to ignoring with respect to , an approximation to which
we will hold to in what follows.

Defining as the voltage amplification factor—i.e., is
the ratio of to (referring to Fig. 1), the following result
is obtained:

(2)

where it has been assumed that . Therefore, the
input admittance can be shown to be

(3)
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Fig. 2. TheI–V curves of the HEMT fh�35�.

where, as in (2), is ignored in comparison with .
However, one cannot ignore completely, as it is the
element which provides feedback from output loop to input
loop. This feedback is what allows oscillation. Once has
been taken into account in the determination of the input
impedance, it need not be taken into account again. It is the
smallest value of the elements of the circuit and need only be
included to first order. Following a similar discussion made
by Sevin [21], it can be seen from (3) that if is either
purely resistive or capacitive, the input impedance has
a positive resistance and the transistor is stable. However,
when is inductive, the input impedance can have negative
resistance and the transistor is unstable, as can be seen from the
expression in (3), when a of is substituted, to obtain

(4)

Substituting into (2), we observe that the
transistor can be unstable, i.e., can be greater than one,
at the same time that the phase of can be close or
equal to 180. This is exactly the case for positive feedback.
Although may be small and, therefore, the quantity of
positive feedback to the input loop small it is unstable. An
important observation is that this measured phase relation-
ship of the transistor in the unstable region agrees with
previous optical sampling measurements on this radiating
oscillator [22]. Oscillation initiates inside the transistor when
the magnitude of the negative resistance is larger than the
termination impedance. As the intensity of the oscillation
increases, the effects of nonlinear components in the circuit
will govern the saturation characteristics of the transistor
oscillation, forcing the oscillation to reach the steady state.
It is these nonlinear bias-dependent saturation characteristics
that can be determined and cast into a qualitatively more
fundamental formalism which uses the VDP model.

B. Saturation of a Radiating Oscillator

To reach steady-state oscillation, an oscillator must have a
nonlinear feedback element. In our case, this element is the
transistor. The – curve of the fh 35 is shown in Fig. 2.

Fig. 3. The effect of the amplitude of ac gate–source voltage on direct
drain–source current in the channel.

The purpose of this section is to show how the nonlinear-
circuit elements eventually can be replaced with the VDP
equation. For the HEMT, the advanced Curtice model [1]–[3]
is used to fit the curves at different gate–source voltages. In
the transistor model, , , , and are nonlinear and
bias dependent. However, if we assume that the main nonlinear
element contributing to the saturation is the transconductance

, we can calculate the dependence of on the ac gate
voltage. The Curtice model describes the drain current with
respect to the drain–source and gate–source voltages as

(5)

where also

(6)

Values of parameters , , , and are obtained from
nonlinear fitting of the – curves and are bias independent.
The dc bias conditions of our oscillator are V and

V. As the oscillator begins oscillation at frequency
with ac voltage amplitudes and , the voltages

and in (5) become

(7)

(8)

By substituting (7) and (8) along with fitting parameters,
, and into (5), and expanding the terms in the frequency

variable , becomes the superposition of the following
terms:

(9)

where is the component of the dc current in the channel.
Fig. 3 shows the relationship of the magnitude of the dc current

versus the magnitude of the alternating voltage. It can
be seen that as increases, increases. The drift of the
dc bias voltage due to the change of dc current can be
calculated as follows:

(10)
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Fig. 4. The effect of the amplitude of ac gate–source voltage on transcon-
ductance from the nonlinear computation.

In (10), is the transconductance at the original bias point.
Notice that all the circuit components of the transistor are
bias dependent. However, the sensitivity to the change of the
voltages is different from component to component. It has been
shown that transconductance is the main gain mechanism of
the HEMT and is also the most nonlinear component in the
transistor [19], [21]. The relationship of the transconductance

with respect to ac voltage amplitude can be computed
directly from (6) to (10). Their relationship is shown in Fig. 4.

The effect of the bias dependence of gate–source capaci-
tance on oscillation has also been studied. The results of
the calculation indicate that the capacitance plays the role
of positive feedback and the transconductanceplays the
role of negative feedback in our oscillator. Since the saturation
effect is the main consideration in the investigation (i.e., we
only consider the case where the oscillator will reach the
steady state), we conclude that the main effect of nonlinearity
is indeed from the transconductance. Fig. 4 shows that the
value of the transconductance is increased as the ac voltage

increases. The VDP oscillator equation can be derived in
a rather straightforward manner. Referring to Fig. 1(b), for
oscillator design we define

(11)

and

(12)

where, for simplicity, we have assumed that our input termina-
tion consists of a series and . The effect of the amplitude
of ac voltage on the input resistance and the input reactance of
the transistor is shown in Fig. 5(a) and (b). Their relationship
can be fit into the simple form

(13)

where is the initial input resistance of the transistor and
is the fitting parameter. When the magnitude of is

larger than the load resistance, the amplitude of the oscillation
increases. As a result, the negative input resistance decreases

(a)

(b)

Fig. 5. The effect of the amplitude of ac gate–source voltage on the (a) input
resistance and (b) input reactance of the transistor.

[as shown in Fig. 5(a)]. Eventually, when the magnitude of the
negative resistance equals the load resistance, the oscillation
reaches a steady state. Fig. 5(b) shows that the input reactance

is inductive in our oscillator. The value of the reactance
also changes with the amplitude of the oscillation. To derive
an equivalent VDP model for the transistor oscillator, we can
assume that and are fixed within the frequency range of
operation. The equation describing the circuit becomes

(14)

Since is small [23] and we have already taken it into
account in the calculation, we can ignore its effect on the
current . In this limit, the current is roughly related to
the voltage across the capacitance by

(15)
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This is equivalent to saying that the positive feedback is small
in steady state. Using (13) in (14), we obtain

(16)

and the circuit equation of the oscillator can be formed by
substituting (15) into (16) to obtain

(17)

Letting , ,
, and , (17) becomes the VDP equation

(18)

The derivation has qualitatively shown that the voltages and
currents of a transistor oscillator obey the VDP equation.
The nonlinear input resistance is the saturating factor of the
oscillator in this case. Even when the configuration of the
oscillator changes, the form of the equation should remain the
same. However, the detailed relationship between the VDP
parameters and the oscillator parameter can be dramatically
different. In (18), parameter is the saturation coefficient or
damping constant and is the resonance frequency in the
absence of dissipation or gain. The constantis proportional
to [14], where is the factor of an oscillator. In the
case of a high -factor resonator where the frequency-locking
range of the oscillator , the value of is evidently
much smaller than .

Clearly, VDP parameters can also be evaluated numerically
using the circuit parameters given on the data sheet. However,
the direct calculation of the VDP parameters from the large-
signal transistor parameters has the following disadvantages.
First, the calculated parameters are model dependent. Accurate
models of the – curve and the nonlinear components of a
transistor are required. Any error in one of these models will
result in a different value of and , which in turn will result
in a false prediction of the coupled transistor performance.
Second, the calculated VDP parameters are circuit depen-
dent. Different configurations of the passive circuit structures
will result in different types of relationships between them.
Therefore, real-time measurements on an oscillator to obtain
VDP parameters are more realistic. The real power of using
a VDP equation comes not only from its reduced parameter
space, but from the ability to quickly evaluate the parameters
experimentally, providing a simple diagnostic tool.

III. T HEORY OF DETERMINING THE VDP
PARAMETERS EXPERIMENTALLY

In Sections I and III, we have justified that self-sustained
oscillation is governed by the VDP equation. It is known that
there exists an analytical stationary solution of (18) under the
condition that is small, compared to , which is given by
[24], [25]

(19)

Fig. 6. Power spectrum of the transistor oscillator.

where

(20)

Since is small, the higher order terms of the solution
can be neglected. The approximate stationary solution for
force-free oscillation is

(21)

With a high- resonator, an oscillation frequency of the VDP
oscillators is close to the resonant frequency. The amplitude
of the oscillation is inversely proportional to the square root
of parameter . The oscillation frequency and the magnitude
of a VDP oscillator can both be obtained from a measurement
using a spectrum analyzer. Therefore, the parametercan
be determined experimentally. Fig. 6 shows the spectrum of
a self-oscillating active antenna. We can see that the second-
order and higher order terms of the steady-state solution in (21)
are too small to be detected by the spectrum analyzer. This is
further proof that the active antenna is a VDP oscillator and
has small values of .

Notice that the stationary solution of the VDP equation in
(21) only gives information about the parameter, but has no
information about the absolute value of . If one wants to
determine all of the VDP parameters experimentally, one needs
another measurement. Since the constantis proportional
to , the relative value of can be estimated from
measuring the locking bandwidth of the oscillator. Calibration
of a locking measurement can be a problem. Here, we will
consider another technique.

The technique we propose in the following derivation can
be used to complete the parameter determination. In this
approach, we add an external sinusoidal signal with frequency

to the original bias voltages of a self-sustained transistor
oscillator. Thus, the formulation which corresponds to the
VDP equation can be described as follows:

(22)

The VDP equation with constant coefficients has been treated
by many researchers [12], [14], [24], [25]. However, to our
knowledge, the solution of (22) is not available in any of the
previous studies of the VDP equation. As we know, there is no
simple closed-form expression for such a nonlinear oscillation,
but it is possible for one to try to obtain the approximate
solution of the differential equations under certain conditions.
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In this section, we will use a multiple-scale expansion method
to analyze (22) and to predict what will be measured by
a spectrum analyzer. Furthermore, we will explain how to
extract the parameters from the measurement. Again, this
approach is used under the assumption that is much
smaller than one. The comprehensive treatment of this type of
stationary oscillation is shown as follows. Using the method of
multiple scales [24], we introduce new independent variables
according to

(23)

It follows that the derivatives with respect toin terms of the
partial derivatives with respect to are related by

(24)

and

(25)

where

(26)

Taking and as the first-order approximations, we seek an
approximate solution of (22) in the form

(27)

Substituting (27) through first order into (22), we have

(28)

Transforming the derivatives and keeping the termsand
only, the left and right terms of (28) become

(29)

Equating the coefficients of like powers, and on both
sides (left and right terms) of (29), we have

(30)

and

(31)

As was discussed earlier (19), the lowest order solution of
(30) is given by (21). Now, (31) is a formidable equation to
handle exactly, but this is not the idea behind perturbation
theory. We need to expand (31) to a self-consistent first order.
Using the solution of (21) for , we note that (31) reduces to

(32)

Fig. 7. Power spectrum of the VDP equation with a periodical coefficient
calculated from a numerical simulation. Simulation parameters� = 0:01,

 = 0:01, !0 = 1 Hz, and!f = 0:1 Hz.

where terms like are zero to first order and terms
like were ignored. can be explained away as follows.
To lowest order, we would like to vary with and to
vary with . Dependence of on and on should
be weaker. The second derivative ofwith respect to can
indeed be seen to lead to terms at , which is counter to
the multiple scales hypothesis. Ignoring this second derivative,
we find that

(33)

where a trigonometric identity has been used, as has the fact
that is just . The first-order correction to the lowest order
solution has added sidebands to the fundamental at an am-
plitude [see (27)] below the fundamental. Successive
corrections would add successive sidebands at angular fre-
quencies with amplitudes proportional to coefficients
multiplied by . We will see in Section IV that this
is indeed the experimental result. Measurement of the first
sideband and comparison with the theoretical result will be
sufficient to determine the, which is what we set out to do.

IV. RESULTS AND DISCUSSION

We have now shown that the VDP damping factorcan be
extracted by simply adding an external modulation frequency
to an oscillator and measuring the relative amplitudes of
the sidebands. Since the multiple-scales technique employed
approximations in order to achieve the simple result shown in
(33), it is necessary to verify the accuracy of the approximate
solution. The results from the direct numerical calculation of
(22) are compared with the analytical solution obtained by the
method of multiple scales. Fig. 7 shows the power spectrum
of a direct numerical solution in the frequency domain. For
convenience in calculation, a low frequency of operation is
employed. The resonant frequency, used in the simulation
is 1 Hz, and the external modulation frequency is 0.1 Hz.
What is important is not really these absolute values, but their
ratio. What we are assuming is that the modulation frequency



920 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 7, JULY 1998

Fig. 8. Power spectrum of the VDP equation with a periodical coeffi-
cient calculated from analytical solution. Simulation parameters� = 0:01,
!0 = 1 Hz, and!f = 0:1 Hz.

is being applied at 10% of the oscillation frequency. As
we will see, in the experiment we perturbed at a frequency
which corresponds to a significantly smaller ratio to the
center frequency (roughly 0.1%) compared to the 10% in the
simulation, but we used comparable amplitudes in simulation
and experiment. To solve the simulation equation for
requires a time proportional to . This is the reason for
the 10% instead of 0.1%. The important thing to compare
between simulation and experiment will be the number of
sidebands for a given amplitude of perturbation, as the distance
of the sidebands from the center of the line is seen to scale with
the for . When , other instabilities could
be observable. In the numerical calculation, (22) is converted
into a set of nonlinear first-order differential equations, and
these are then solved numerically in the time domain. The
power spectrum of the solution is obtained by discrete fast
Fourier transform. From Fig. 7, one should see that the center
frequency of the oscillation is close to the resonant frequency
of the circuit . As expected, many sidebands are generated
from the external modulation frequency , and the frequency
displacement of the sidebands from the center frequency is

. Thus, there are nine sidebands in the frequency range
of 1 Hz, as shown in the plot. Fig. 8 shows the power spectrum
of the approximate solution of (22) derived from the method
of multiple scales. Comparing Fig. 8 with Fig. 7, reasonable
agreement with the direct numerical calculation is observed.
In particular, the magnitudes of the first and second sidebands
from the two calculations are in better agreement than the
higher order sidebands. The error in the higher order sidebands
mainly originates from the neglect of the higher order terms in
the approximate solution. Results of Figs. 7 and 8 indicate that
(33) provides an accurate approximate solution for practical
application.

The experimental setup used to verify the theory is shown
in Fig. 9. The transistor is biased with two independent power
supplies: the drain–source terminal is connected to a dc power
supply, and the gate–source terminal is connected to a signal
generator. As the transistor starts oscillation, the output power

(a)

(b)

Fig. 9. (a) Experimental setup for a measurement of the VDP parameter. (b)
A structure of the active antenna in the front view and the side view.

(a)

(b)

Fig. 10. Power spectra of a self-sustained active antenna at different ex-
ternal modulation frequencies. Center oscillation frequency!0 = 3:5 GHz.
(a) !f = 7:5 MHz. (b) !f = 11:07 MHz.

of the active antenna is detected by a horn antenna about
35 cm away. This signal is fed to a spectrum analyzer. With
only dc-bias voltages used, the VDP parametercan be
determined by using (21) with the measurement data of Fig. 6.
When a modulated signal is added to the gate–source bias
voltage of the transistor, the power spectrum of the oscillator
is shown in Fig. 10(a) and (b), where modulated frequencies

are 7.5 and 11.07 MHz, respectively. As the frequency
increases, the displacement of sidebands from the center

frequency increases, and the frequency offsets are exactly in
the form of . These phenomena are in agreement
with those predicted from our theory. By measuring the ratio
of the magnitude of the first sideband to the fundamental, the
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Fig. 11. Power spectrum of a self-sustained active antenna with external
modulation frequency!f = 0:91 MHz, which is less than the bandwidth of
the phase noise.

value of can be calculated from (27) and (33).
It is important to note that when we solved (22), which is

in the form of

(34)

where are noise terms and can be an external
injection-locking signal, etc., we considered the equation to
be source-free. That is, the terms in the right side of the
equation are set to zero. Therefore, the linewidth of the
spectrum calculated from the approximation solution is zero.
Theoretically, the VDP parametercan be determined from
the experiment as long as the modulation frequencyis
larger than zero. However, practically speaking, the transistor
oscillator is not noise-free, and the spectrum of the oscillator
has a certain spectral width. It is well-known that GaAs
MESFET’s have excess low-frequency noise at frequencies
below 10 kHz due to trapped electrons in the semi-insulating
substrate. These deeply trapped electrons cause dc current
fluctuations in the source-drain channel and, hence, introduce
noise to the oscillator. The behavior of this type of noise will
decrease as above 10 kHz [26], [27]. This -like
noise is the fundamental noise in GaAs field-effect transistors.
If the noise source is considered in the VDP equation, the
phase of the oscillation of the transistor oscillator will have a
time-dependent term, which we call the phase noise of the os-
cillator. The linewidth of the oscillator is directly proportional
to the bandwidth of the phase noise. Therefore, if the external
modulation frequency is less than the linewidth of the
oscillator, the result of the external modulation in the bias line
will be only to broaden the linewidth of the VDP oscillator, and
the multiple spectra cannot be resolved from the measurement
(shown in Fig. 11). It is recommended that the modulation
frequency of be larger than 1 MHz for this proposed
experiment. As another example, a radiating structure similar
to the one shown in Fig. 9(b) was fabricated on Duroid to
determine the accuracy of (33). The fundamental frequency of
operation was around 2.54 GHz, and external modulations of
3 and 4 MHz were used, respectively. Fig. 12(a) and (b) show
the sideband structure when external modulation is added.
It was observed, however, that if an oscillator has multiple
oscillations, then the beatnote of the external modulation
with the higher oscillation frequencies can interfere with

(a)

(b)

Fig. 12. Power spectra of a self-sustained active antenna at different external
modulation frequencies constructed on Duroid. Center oscillation frequency
!0 = 2:54 GHz. (a)!f = 3 MHz. (b) !f = 4 MHz.

the accuracy of this measurement technique. Therefore, it is
necessary that the oscillator be a single-frequency oscillator.

V. SUMMARY

We have shown that the operation of a transistor oscillator
can be described by the VDP oscillator equation. We have
demonstrated that the VDP parameters are directly related
to the circuit parameters of an oscillator. By applying an
external modulated signal to the bias voltage of a transistor
oscillator, a simple approach to determine the VDP parameters
from the experiment has been developed. Analysis of the
time dependence of the response of a modulated oscillator
indicates that the magnitude of the spectral sidebands, which
the response of the oscillator develops, are strongly dependent
on the VDP parameters. An analytical expression to determine
both of the VDP parameters from such an experiment are
given. Results of the experiment agree with the theoretical
predictions, which further justifies the perturbation theory.
The procedure can be summarized as follows.Step 1: The
power spectrum of an oscillator under normal bias voltages is
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measured. By measuring the amplitude of the oscillation, the
parameter can be calculated from (21).Step 2: A sinusoidal
modulated signal is added to one of the bias voltages of the
oscillator. By measuring the amplitude of the main peak and
first sideband, the damping parametercan be obtained with
use of (33). Comparing the amplitude of the main oscillation
frequency in Step 2 with the one in Step 1, the effect
of the modulation depth can be calibrated. Notice that this
technique is only valid for an oscillator with a single oscillation
frequency. The VDP oscillator model has advantages for
predicting the dynamic behavior of an oscillator under the
influence of external injection signals and for analysis of
coupled oscillator arrays. If one needs to use the VDP equation
for a transistor oscillator, the presented technique provides
an alternative and effective means to determine the VDP
parameters experimentally.
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